Appendix Five Summary Table of Studies on Chicken Embryo Development # APPENDIX FIVE SUMMARY TABLE OF STUDIES ON CHICKEN EMBRYO DEVELOPMENT | | | DESCRIPTION | ON OF STUDY POPUL | ATION | DESCRIPTION | ON OF EXPOS | URE SYSTEM | | |--|--|---|--|-------------------------|----------------------------------|-------------|--------------|--| | Study (ref) | Hypothesis
(Objectives) | Gender/Age | Strain | Number | Fields/Freq. | Intensity | Polarization | List Study Groups & No. | | Study 1
Martin,
<i>Bioelectromag</i>
9:393-96
1988 | There is a critical period of development sensitive to EMFs | Fresh fertile
eggs, used
within 5 days of
laying | White leghorn H & N Line Redmond, Washington | 600 | Magnetic
100 Hz
Pulsed | 1 μt | Horizontal | Control – exposed
Exposed for
1) 48 hrs – 100c/100E
2) 1st 24 hrs – 100/c/100
exp
3) 2nd 24 hrs-100c/100
exp | | Study 2
Berman et al.,
Bioelectromag
10:169-87
1990 | To determine the effect of EMFs on development | Fresh fertile
eggs, used
within 5 days of
laying | White Leghorn
and Arbor
In one lab | 1,200 in
6 labs | Magnetic
100 Hz
Pulsed | 1 μt | Horizontal | 6 laboratories
sham & exposed
100 & 100 eggs per
experiment
10 sham/10 exp. per run
for 10 runs/exp. | | Study 3
Martin,
Bioelectromag
13:223-230
1992 | To determine if metering EMF parameters alters the effect of EMFs on chick development | Fresh fertile
eggs, used
within 5 days of
laying | White leghorn | 800/
200 per
form | Magnetic
60 Hz | 3 µt | Horizontal | Pulse type – C – exp
#7 eggs/run
unipolar – 200 – 10
Split – 200 – 10
Bipolar – 200 – 10
& 72 hrs no pulse | | Study 4 Moses & Martin, <i>Biochem Int</i> 28(4):659-664 1992 | To determine the effect of EMFs on enzyme activity in the chick embryo | As above | As above | 380 | Magnetic
60 Hz
split pulse | 4 µt | Horizontal | Control normal Exposed normal Control abnormal Exposed abnormal Enzymes tested were 5 "NT; ACHE and ALP | | | | DESCRIPTION | ON OF STUDY POPU | JLATION | DESCRIPTION | ON OF EXPOS | SURE SYSTEM | | |---|---|---|---|---------|------------------------------|-------------|--------------|--| | Study (ref) | Hypothesis
(Objectives) | Gender/Age | Strain | Number | Fields/Freq. | Intensity | Polarization | List Study Groups & No. | | Study 5
Moses &
Martin,
Biochem & Mol
Biol Int
29(4):757-762
1993 | To determine the effect of EMF on 5 'NT activity inc per mount on transient | Fresh fertile
eggs, used
within 5 days of
laying | White leghorn | 260 | Magnetic
60 Hz | 4 μt | Horizontal | 1) Exposed 3 days & 3 field-free day = 200 eggs 2) Exposed 3 days & 15 field-free days = 60 eggs. Day 6 – whole embryo Day 18 – brains of embryo | | Study 6
Martin &
Moses,
Biochem Mol
Biol Int.
36(1):87-94
1995 | Superimposed
noise with same
parameters
mitigates the
effect of EMFs
on enzyme
activity | Fresh fertile
eggs used
within 5 days of
laying | White leghorn | 600 | Magnetic
60 Hz | 4 μt | Horizontal | Control – 200
Field – 200
Field & Noise – 200 | | Study 7
Litovitz et al.,
Bioelectromag
18:431-438
1994 | Living cells are
affected only by
EMFs that are
spatially
coherent | Fresh fertile
eggs, used
within 24 hrs of
laying | White leghorn
H & N line
Redmond,
Washington | 1,107 | Magnetic
100 Hz
pulsed | 1 μt | Horizontal | Run 1) Sham – 255 EMF – 152 EMF & Noise – 110 Run 2) Sham – 206 EMF – 203 EMF & Noise – 181 | | | | DESCRIPTIO | ON OF STUDY POPUL | ATION | DESCRIPTION | ON OF EXPOSU | JRE SYSTEM | | |--|--|---|-------------------|---------|---|-------------------------|--------------|--| | Study (ref) | Hypothesis
(Objectives) | Gender/Age | Strain | Number | Fields/Freq. | Intensity | Polarization | List Study Groups & No. | | Study 8
Farrell et al.,
Bioelectromag
18:43-438
1997 | To determine if genetic composition of flocks can alter response to EMFs | As above | As above | 2,841 | Magnetic
100 Hz
Pulse or
60 Hz
Sinusoidal | Pulse 1 µt
Sine 4 µt | Horizontal | Pulse 4 groups or campaigns Total of 2,296 eggs Sinusoidal 1 group or campaign Total of 545 eggs | | Study 9
Farrell et al.,
Bioelectromag
19:53-56
1998 | A superimposed
noise field
inhibits 60 Hz - 4
µt attention on
ODC activity | As above | As above | 60 | Magnetic
60 Hz | 4 µt | Horizontal | Control – 20
60 Hz – 20
60 Hz & Noise – 20
At each data point 5–7
embryos tested | | Study 10
Leal et al.,
J of
Bioelectricity
7(2):141-153
1989 | To determine if weak changes in the earth's geomagnetic field alters response of balance systems to EMFs | Fresh fertile
eggs, used
within 3 days of
laying | White leghorn | 520-650 | Magnetic
100 Hz
pulsed | 1.4 – 1.0
µt | Horizontal | Control – 13 groups/20-20
Exposed –13 groups/20-25
eggs/group | | Study 11
Chacon et al.,
J of
Bioelectricity
9(1):61-66
1990 | To compare effect of 30 Hz MFs to earlier studies using 100 Hz | Fresh fertile
eggs, used
within 2 I/2 days
of laying | White leghorn | 350 | Magnetic
30 Hz | 1 μt | Horizontal | Control – 175
Exposed – 175 | | | | DESCRIPT | TON OF STUDY POPU | LATION | DESCRIPTIO | N OF EXPOS | URE SYSTEM | | |---|--|-----------------------|--|------------------|---|-----------------|--------------|---| | Study (ref) | Hypothesis
(Objectives) | Gender/Age | Strain | Number | Fields/Freq. | Intensity | Polarization | List Study Groups & No. | | Study 12
Ubeda et al.,
Bioelectromag
15:385-398
1994 | To assess the permanence of the effects induced by early MF exposure | As above | As above | 597 | Magnetic
100 Hz
Pulse A
85 µs
time
Pulse B
2.1 µs | 1 μt | Horizontal | Control – 276 Exp. I Shem – 75 PMF-A – Exp – 72 Exp II PMF-B Shem 92 Exp – 82 | | Study 13
Koch & Koch,
J of
Bioelectricity
19(1&2):65-80
1991 | To test whether development is altered by PEMFs | Fresh fertile
eggs | Arbor acre
Preterm cross
White leghorn
Cornel | 394
274
38 | Magnetic
100 Hz | 1 μt | Horizontal | 3 Groups all 1 µt 1) Pulse –5 experiments 1,020 eggs 2) Biopolar square-1 exp 100 eggs 3) Sinusoidal-1 Exp 100 eggs | | Study 14
Singh et al.,
J Anat Soc
India
39:41-47
1991 | To determine effect of EMFs at varying intensity & frequency on chick embryogenesa | Fresh fertile
eggs | White Leghorn | 67 | Magnetic
100 to 1,000
Hz | 0.5 to 40
µt | Not given | Control – 2 eggs/exp.
Exp.
0.5 µt/100 Hz-10
0.5 µt/1000 Hz – 9
19 µt/100 Hz – 8
40 µt/1000 Hz – 9
40 µt/1000 Hz – 9 | | | | DESCRIPTION | ON OF STUDY POPU | LATION | DESCRIPTIO | ON OF EXPOS | URE SYSTEM | | |---|---|--|------------------|--|--------------------------------|---|--------------------------------------|--| | Study (ref) | Hypothesis
(Objectives) | Gender/Age | Strain | Number | Fields/Freq. | Intensity | Polarization | List Study Groups & No. | | Study 15
Espinar et al.,
Bioelectromag
18:36-44
1997 | To test effect of
static (20 MT)
field on
development of
chick cerebellum | Fresh fertile
eggs | White Leghorn | 144 total
3 Exps
with 48
eggs per
exp. | Magnetic
static | 20 MT | Not clear
Possible
Horizontal? | Eggs exposed from day 1 (L Exp) or day 6 (S exp) and removed on day 13 or 17 Control – shem day 13 or 17 C-48 eggs S Exp – day 13 (24 eggs)17-24 L Exp – day 13 (24) 17 (24) | | Study 16
Blackman et
al.,
Bioelectromag
9:129-140
1988 | To study the interaction of EM fields with the developing CNS | Fertile eggs,
used within 7
days of laying | Not given | Exp1 = 144
Exp2 = 160
Exp3 = 128 | EM 50 or 60
Hz | Av 10
vems/m
73 ntrms
0.073 µt | Not given? | Exp 1 72 eggs/50 Hz 72 eggs/60 Hz Exp 2 80 eggs/50 Hz 80 eggs/60 Hz Exp 3 64 eggs/50 Hz 64 eggs/60 Hz | | Study 17
Yip et al.,
J Magn Res
Imaging
4:742-748
1994 | To determine if exposure to ML fields affect early development of the chick embryo | Eggs, used
within 2 days of
laying | White leghorn | Total
846 | Magnetic
radio FI
64 MH2 | Magnetic
1.5 T R.F
64 MH2 | Circular | 2 groups Morphology at 53 Hz C – 268 Exp – 274 Morphology at 6 days C – 150 Exp – 154 | | | | DESCRIPTION | ON OF STUDY POPU | LATION | DESCRIPTION | on of Exposi | JRE SYSTEM | | |---|--|--|------------------|--------|----------------|--|----------------------------------|--| | Study (ref) | Hypothesis
(Objectives) | Gender/Age | Strain | Number | Fields/Freq. | Intensity | Polarization | List Study Groups & No. | | Study 18
Yip et al.,
J Mag Res
Imaging
4:799-804
1994 | To assess effect
of ML exposure
on cell
proliferation and
magnetion of
chick LMC
neurons | Eggs, used
within 2 days of
laying | White Leghorn | 58 | Mag & R.F | 1.5 T
Static
Magnetic
of 0.65/em | Circular | Motor neuron developmen
C-32
MR exp 26
of irradiated embryos no
given | | Study 19
Coulton &
Bakker,
Phys Med Biol
36(3):369-381
1991 | To study the claimed stimulatory effect of EMFs on bone growth | Fertile eggs,
used within 2
days of laying | Ross I | 240 | 15 Hz | 2.1 mT
series 1 &
2
21 µt
series 3 | Possibly vertical? | Series I
C-49 – Test – 56
Series 2
C – 28 T – 30
Series 3
C-39 T – 38 | | Study 20
Youbicier-Simo
et al.,
<i>Bioelectromag</i>
18:514-523
1997 | To assess effect
of EMFs rm.
VDTs on young
chickens | Not given | Blanche
JA | 240 | 15 to
80 Hz | From 2 T
660 NT | Horizontal
and/or
vertical | Exp 1 – TV
Control 30
Exp – 30
Exp 2 Computer
C – 30
Exp 34
Exp 3 – Computer
Control – 60
Exp 60 | | | | DESCRIPT | TON OF STUDY POPU | LATION | DESCRIPTIO | N of Expos | URE SYSTEM | | |--|---|---------------|-------------------|-----------------------------------|--|--|------------------------|--| | Study (ref) | Hypothesis
(Objectives) | Gender/Age | Strain | Number | Fields/Freq. | Intensity | Polarization | List Study Groups & No. | | Study 21
Piera et al.,
Acta Anat
245:302-306
1992 | To assess effect of continuous exposure to EMFs on development of chick embryos | Fertile Fresh | White Leghorn | 144 | Assumed 50
Hz? Not
given in
paper | 0,181, or
361
S2/CM ² | Not given | Control 48
Exp – 1,813
Exp – 36,132 | | Study 22
Pakouva et al.,
Toxicology
letters
88:313-316
1996 | To assess effect of MFs plus chemical teratogen on chick development | Not given | White Leghorn | 3 Exps
1-210
2-205
3-120 | 50 Hz | 10 mT | Horizontal | Exp 1
C-96 Exp 114
2 Teritogen –
95/MFATER110
3 Teritogen – 60/MFATER
60 | | Study 23 Pakouva et al., Rev on Environ Health 10(3-4):225- 233 1994 | To assess the effect of 50 Hz MFs on chick embryonic development | Not given | White leghorn | 324 in
10 Exps | 50 Hz | 10 mT or
6 μt | Horizontal or vertical | 10 mT – Horizontal Control – 73 6 Exper – 94 10 mT – Vertical Control – 13 2 Exper – 42 6 µt Horiz c – 21 Exp – 20 6 µt vert c – 31 Exp – 30 | | | | DESCRIPTION | ON OF STUDY POPU | ILATION | DESCRIPTION | ON OF EXPOS | SURE SYSTEM | | |---|--|---|------------------------|----------------|--------------|-------------|--------------|---| | Study (ref) | Hypothesis
(Objectives) | Gender/Age | Strain | Number | Fields/Freq. | Intensity | Polarization | List Study Groups & No. | | Study 24 Pakova et al., Rev on Environ Health 10(3-4)235- 241 1994 | To study interaction of 50 Hz fields with x-rays Direct or indirect interaction | Not given | White leghorn | 282 and
196 | 50 Hz | 10 Mt | Horizontal | Indirect exposure Control – 83 x-ray – 100 MF & x-ray – 99 Direct Control – 45 x-ray – 96 x-ray & MF – 55 | | Study 25
Veicsteinas et
al.,
Bioelectromag
17:411-424
1996 | Alteration of
extracellular
matrix
components play
role in abnormal
development | Eggs used
within 5 days of
laying | White leghorn
hisex | 420 | 50 Hz | 200 μt | Horizontal | 2 Protocols A – 100 eggs 50 C 50 Exposed B – 320 Eggs 80 C 80 Exp x 2 | | | | OUTCOM | E & DISEASE MODEL | | | | | | |--|----------|---------------------|---|--|-------|--|---|---| | Temp | Duration | Endpoint(s) | Assessment Method | Effects Observed
Results w/numbers | Flaws | Strengths | Limitations | Conclusions | | Study 1 Recorded every 15 seconds maintained between 37.6 – 38.0°C | 48 hrs | % of normal embryos | Embryos removed and
under microscope
assessed for H&H
stage of development
viability & percentage
normal | % normal 1. Sham – 93 Exp – 76 2. Sham – 94 Exp 76 3. Sham – 86 Exp 89 | | Protocol & apparatus as used in henhouse project | Only 48-hr
embryos
were
assessed | Pulsed EMFs cause a significant increase in the number of abnormal embryos when applied during the 1st 24 hrs of incubation, the critical | | | | OUTCOME | & DISEASE MODEL | | | | | | |--|---|---|---|---|---|---|---|---| | Temp Study 2 Recorded every 15 sec with Chessel recorder limits 37.6- 38.0°C | Duration
48 hrs | Endpoint(s) % Normal embryos & H & H stage & fertility | Assessment Method Embryos removed and microscopically examined for H & H stage; abnormalities; viability | Effects Observed Results w/numbers 1. Sham – 70 Exp 64, P08 2. Sham – 76 Exp 78, P - 0.617 3. Sham – 73 Exp 69, P402 4. Sham – 43 Exp 76, P001 5. Sham – 86 Exp 84, P606 6. Sham – 88 Exp 77, P03 | Flaws Lab 2 used arbor acre; rest used white leghorn | Strengths Protocol and apparatus similar in all laboratories | Limitations | Conclusions In 5 of 6 labs the % of abnormal embryos was higher in exposed than controls. The only significan interaction was between site and exposure condition on number of normal embryos | | Study 3
Limits as
above
37.6-
38.0°C | 48-hr
exposure
and 72
hrs, no
field | % of abnormal
& number
dead embryos | Embryos removed
staged by H & H
method and classified
as normal, abnormal,
or dead | Exposed & 48 hrs
Abnormal
Sham 14, Exp 15
Dead
Sham 2, Exp 5
+ 72 hr no field
Abnormal
Sham 6, Exp 5
Dead
Sham 6, Exp 7 | | As above | Longer field
free
incubation is
needed | Exposure & th
zut 60 Hz field
has no effect of
% of abnorma
embryos. With
extended no
field, % of abn
drops and % of
dead embryos
rises | #### **OUTCOME & DISEASE MODEL** Effects Observed Results w/numbers Endpoint(s) Strengths Temp Duration Assessment Method Flaws Limitations Conclusions Study 4 78-88 hrs Normal embryos Mean specific Activity was Used same Small number In normal activity of embryos determined exposure of abnormal С Limits as Exp 5'NT, Ache & exposed to the spectrophotomeapparatus and embryos SNT 10 Above 5 Alp trically from N = 19field, only the protocol as in 37.6-Helte 29 28 activity of 5'NT hemogenete of whole the above 3 Alp 58 38.0°C 57 embryos experiments was reduced. Specific activity In abnormal Abnormal Embryos embryos, the С Exp activity of all the SNT 38 12 enzymes 5'NT, Helte 196 57 Helte & Alp 67 Alp 111 were reduced Study 5 Total protein content 3 day exp & 3 day -No As above Activity of 5'NT Exposed Enzyme Small number activity of with enzyme activity was reduced by 3 days field of abnormal Limits 37.6-5'NT, Ache & determined Normal embryos ONLY 40 to 50% in 6 embryos only then 38.0°C spectrophotome-5'NT reduced by 4,070 values for day embryos either 3 αlA checked or 15 trically and in Ache & Alp normal with Cerebellum of 18 day Only 9 cerebellum days, no Chessel embryos 5'NT abnormal values in cortex recorder C - 24(10)embryos in were unaffected Exp(1) - 12(12)first 200 eggs Values for (2) - 14cortex are in parentheses. Numbers are specific activity (nmol/min/mg protein) # **OUTCOME & DISEASE MODEL** | | | | | Effects Observed | | | | | |---|---|---------------------------|---|---|--------|---|---|--| | Temp | Duration | Endpoint(s) | Assessment Method | Results w/numbers | Flaws | Strengths | Limitations | Conclusions | | Study 6 Limits 37.6- 38.0°C Recorded every 15 sec with Chessell multi-point | Exposed for 3 days & harvested or incubated field free for extra 3 days | Specific activity of 5'NT | Enzyme activity determined with Sigma Reagrat kit. Centrifugation analyzer was used to quantify 5'NT activity | Mean specific act 3 day expos C Fin F Mean 12 11 7 SEM 13 139 107 Mean specific act 3 day & 3 day C Fin F Mean 18 17 11 SEM 136 121 139 | T laws | Used same protocol and apparatus as in previous 5 experiments | Only incubated for 3 days post exposure | Superimposition of a noise field of similar parameters mitigates the effect of EMFs on activity of 5'NT. Activity levels remained reduced even after 3 days of field-free incubation | | | | OUTCOM | E & DISEASE MODEL | | | | | | |--|----------|-------------|---|--|-------|--|-----------------------|---| | Temp | Duration | Endpoint(s) | Assessment Method | Effects Observed Results w/numbers | Flaws | Strengths | Limitations | Conclusions | | Study 7 | 48 hrs | % abnormal | Embryos removed at | Percent abnormal | | Used same | Used only 48 | At improved | | Temp con-
trolled
within
0.4°C as in
protect
henhouse | | embryos | 48 hrs and live embryos examined Per henhouse protocol | Run 1 Sham 6.3% Pulse 19.1 Pt Noise 7.3 Run 2 Sham 2.9% Pulse 10.8 Pt Noise 3.3 | | protocol and
apparatus as
Henhouse
10 replicates
per run | hours as
benchmark | noise ach to EMF strength the abnormal mate was the same as control. Sham and pulse is significant p<0.05 & exp vs. exp & noi is also significant | | Study 8 | 48 hrs | % abnormal | Embryos examined as | Percent Abn | | As above | Results were | p<0.05 Exp to EMFs | | Tem was
monitored
daily as
above | CIIIO | embryos | above, also lethality was determined | Campaign
C-E-P
1 14 29 < .01
2 1.4 14.3 0.37
3 6.0 17.6 .0001
4 1.4 10.3 .0001
5 2.3 7.1 .04 | | A3 above | over 5 year
span | numbers of
abnormal
embryos in al
campaigns,
increase
number of ab
in exposed
variations
appear to be
related to
genetics due
flock change | | | | OUTCOME | & DISEASE MODEL | | | | | | |--|---------------------|---|--|--|-------|-----------|---|--| | Temp | Duration | Endpoint(s) | Assessment Method | Effects Observed Results w/numbers | Flaws | Strengths | Limitations | Conclusions | | Study 9 Temp controlled within ± 0.4°C | From 8 to
26 hrs | ODC activity
ODC activity at
16 & 26 hrs of
incubation | Embryo proper was used if ODC activity protein analysis Kit (Biolab) expressed as Pmole ¹⁴ COL/30Min per mg protein | ODC activity has 2 peaks at 15 & 26 hours of incubation 60 Hz altered both, enhanced by 2X, decreased 2nd by 1/2 EMF & noise=control 1st peak – 2nd 15 hrs C 29 ± 4pm F 54 ± 6 pm F & N 29 ± 6pm 26 hours C 69 ± 2 pm F 40 ± 3 pm F & N 70 + 3pm | | As above | Extremely
small number
of embryos at
various
stages | Imposition of a
noise field
inhibits the
effect of a 60
Hz 4 µt field,
identical &
control | #### **OUTCOME & DISEASE MODEL** Effects Observed Duration Endpoint(s) Results w/numbers Strengths Limitations Conclusions Temp Flaws Assessment Method Study 10 48 hrs % of abnormal Abnormality ratio 13 experiments from 9-In 6 of the Used figures Exposure Weak pulse determined 1984 to 11-1985 for 48 EMFs have embryos system & 13 38.0°C Exp AR % of Abn. Exp Н protocol as only potential to experiments, exposure to <u>+</u> 0.2°C % of abn. Cent = AR 1.4 326 the percent used in calculate be teratogenic, AR of 1.9 taken as 344 of abnormal henhouse effect at 8 dependent on 3.5 3.2 base value 298 in control project. intervals of 6 other factors 3.0 323 exceeded Reproducible such as hrs 0.6 387 results as to the number changes in the 1.2 381 6 in exposed teretogenic earth's 374 effects of 1.0 geomagnetic 2.2 363 previous field. A 0.7 376 studies significant 8.0 391 relationship 10 392 was found 11 0.3 between 12 1.7 404 13 frequency of 0.6 374 abnormalities in control and mean H values. | | | OUTCOME | & DISEASE MODEL | | | | | | |-------------------------------|---|---|--|---|--|---|--|---| | Temp | Duration | Endpoint(s) | Assessment Method | Effects Observed
Results w/numbers | Flaws | Strengths | Limitations | Conclusions | | Study 11
38.0°C
± 0.2°C | 48 hrs | % of abnormal
& non-
developed
embryos | Embryos assessed for
normal or abnormal
morphology and non-
developed and death | % C Exp Abn 19% 19% Non-developed 7% 16% 26% 35% | numbers in
Table I do
not add up | Protocol and apparatus the same as in previous study & Henhouse | Dead
embryos did
not appear to
be counted | The field as used a significant increase in no developed embryos (arrested development) Embryos with developmenta defects can b further affecte by EMFs | | Study 12
38.0°C
± 0.2°C | 48 hr exposure and 9 days incuba- tion field free | Dead and abnormal embryos combined | Examined for viability;
morphology & staged
as to H&H regimen | Abnormal embryos
Control – 11.9%
Exp. Sham – 8%
#1 Exp – 16%
Exp – Sham 12%
#2 Exp – 29% | | As above, same lab | | Weak EMFs cause increased incidence of malformations Waveform in the cage rise fall time, is a Enertech reading to increase malformation | | | | OUTCOME | E & DISEASE MODEL | | | | | | |---|---|--|--|---|--|--|---|---| | Temp
Study 13
37.5°C | Duration
48 to 72
hrs | Endpoint(s) % of fertile eggs H&H stage normal embryos | Assessment Method Embryos assessed for viability fertility, normal vs. abnormal | Effects Observed Results w/numbers % of normal live egg Sham/Se exp/Se A/P 78/.03 .79/.04 A/A .92/.07 .91/.08 White leg .75/.06 .74/.06 | Flaws | Strengths Reproducible protocol set-up as used in henhouse examined different | Limitations Inability to reproduce results from labs using same fields, apparatus, protocol | Conclusions No significant alterations were noted in any of the parameter tested. Strains did not react differently to EMF | | Study 14
37°C, no
limits given
nor when
checked | 48 hr
exposure
& 17 days
incuba-
tion field
free | Percent of exencephaly | Embryos removed at
day 19 and examined
for abnormality and/or
lethality % given | Control = 0% and
EX dead
.5/100 Hz 10 0
.5/1000 Hz 11.1 10
19 µT/100 25 20
19 µT/100 11.1 10 | Field not
measured,
stray fields
were not
measured
and samples
too small | Clear endpoint | Samples too
small and no
statistics
given | 40 μT had no sig effect. EMFs induced exencephaly with maximum effect at 19 μT/100 Hz, indicating a window effect | # **OUTCOME & DISEASE MODEL** | Temp | Duration | Endpoint(s) | Assessment Method | | ts Obs
ılts w/n | erved
umbers | Flaws | Strengths | Limitations | Conclusions | |---|--|--------------|---|-------------------------------------|-----------------------------------|----------------------------------|-------|---|---|--| | Study 15 | S-Exp | Histology of | Light on EM | Day | 13 | | | Examined | 20 MT field | Exposure to | | Continuous
monitor
37.5°C, no
limits given | 7 or 11
days
L-exp
13 or 17
days | cerebellum | examination of sections of folium vic of chick cerebellum | C Live 22 MCS 0 Day C Live 22 MCS 0 | S1
emb
22
21
17
S2 | L1
21
21
L2
20
20 | | effect on
different stages
of development
and effect of
time of
exposure | not routinely
found where
development
occurs | static 20 mT
field causes
statistically
significant
aberrations with
either short (s)
or long (l)
exposure and
varying length
of exposure
(EXP) for entire | | | | | | ŭ | . 3 | | | | | incubation was
most damaging | | | | OUTCOM | E & DISEASE MODEL | | | | | | |---|--|--|---|---|--|---|---|--| | Temp | Duration | Endpoint(s) | Assessment Method | Effects Observed Results w/numbers | Flaws | Strengths | Limitations | Conclusions | | Study 16 37°C, no limits given nor monitoring regimen | 21 days
Brains 20
min
culture | Assay for radioactive calcium ion efflux | Or radioactive labeled calcium ions | Egg Brain M S.E.
Exp. Exp
50 Hz
50 – 1.00504
60 – 1.038 .029
60 Hz
50 - 1.385 .049
60 – 1.032 .032 | Al eggs were exposed in same apparatus. No control embryos with no field | Results
confirmed and
reproduced in
earlier studies
from same lab | Difficult to reproduce exposure approaches to independently check results | Frequency used to treat incubating eg can alter subsequent response to E fields. 60 Hz exposure to | | | | | Egg positions reversed from results above | 50 Hz
50 - 0.986 .042
60 - 1.059 .047
60 Hz
50 - 1.385 .049
60 - 1.035 .039 | | | | eggs gave bratissue that reacted in insignificant manner to 50 Hz but not alt combinations ambient powerline frequency caralter response to EMFs | | | | OUTCOME | & DISEASE MODEL | | | | | | |---------------------------------------|---|---|---|---|---|--|---|---| | Temp
Study 17
37.0°C ±
1.0°C | Duration
6 hrs 1.5
T and 4
hrs 64
MHz | Endpoint(s) Malformations and dead embryos Expressed as percentage | Assessment Method Embryos removed and examined under dissecting scope at 53 hours and 6 days of incubation. Embryos were exposed during 4 periods in development – 0.6, 12-18 | Effects Observed Results w/numbers Morphology at 53 hrs Exposed Control Period percentages: 0-6 - 12.3 19.4 12-18 13.9 21.5 24-30 8.7 10.6 36-42 11.8 4.6 Total 11.7 14.2 Morph at 6 days % abn & dead Exposed Control Period percentages: 0-6 12.0 8.0 12-18 11.7 12.2 24-30 22.1 11.9 36-42 11.8 5.9 Total 10.5 10.7 | Flaws Vibration assented with mr was not affecting controls | Strengths First 48 hrs divided into 4 sections | Limitations Longer incubation may have shown more abnormalities | Conclusions Exposure to MR fields during first 48 hours of incubation resulted in no increase in abnormality at 53 hrs of incubation. At day 6 the incidence of dead & abnormal increased and was statisticall synitiest p < 0.05 in expose over controls. | | Study 18
37.0°C
±1°C | 6 hrs 1.5
T and 4
hrs RF
pulse | Numbers and
mean
birthdates of
LMC neurons | Several sections of
chick neural tube and
spinal cord were
prepared. The H3 was
used to different
birthdates | Proliferation of LMC neurons is unaffected by exposure. Number of LMC neuron C – 32 – 11,187-1,077 MRI 26 – 11,106 – 851 | Vibration of
MRI was not
allowed for | Used an endpoint and system that is well documented. | Exposure could have been earlier as critical period is 15 & 24 hrs. | Proliferation
and of LMC
neurons was
unaffected by
exposure to the
fields of MRI | # **OUTCOME & DISEASE MODEL** | | | | | Effects Observed | | | | | |--|---|--|--|--|--|--|---|---| | Temp | Duration | Endpoint(s) | Assessment Method | | Flaws | Strenaths | Limitations | Conclusions | | Temp Study 19 37.0°C ± .05°C 38.0°C ± .05°C Reading taken every 15 min | Duration
100 hr in
5 ms
bursts | Endpoint(s) Embryo weight and bone length | Assessment Method Embryos removed and weighed; one length of tibia & femur measured microscopically | Effects Observed Results w/numbers Pooled data Series Emb W Fem 1 T-1.15 3.02 .03 C-1.12 2.96 .02 2 T 1.25 3.15 .05 C 1.29 3.20 .04 3 T 1.19 2.9004 C 1.19 2.87 .03 Ser Tibial Mean Temp 1 T 3.47 .04 37.41 .07 C 3.38 .04 37.30 .07 2 T 3.60 .07 37.29 .04 C 3.66 .06 37.32 .02 3 T 3.30 .05 37.15 .05 C | Flaws Test and control embryos in same incubator | Strengths Careful control of none exposure variables | Experiments covered several seasons and vibrations caused by MRI could have an effect | Conclusions Exposure to a 2.1 nt er 2/µT had no effect upon embryo weight or upon length of tibia or femur | | | | OUTCOME | & DISEASE MODEL | | | | | | |--|--|--|---|--|--|--|--|--| | Temp | Duration | Endpoint(s) | Assessment Method | Effects Observed Results w/numbers | Flaws | Strengths | Limitations | Conclusions | | Study 20
38.0°C ±
1°C | 21 days
entire
incuba-
tion
period | Death as well
as hormonal &
antibody
response | Eggs were candled to check viability & eggs opened after 21 days if not hatched blood assayed for CORT, lg3, or melatonin | 2X number of dead embryos following exposure (47-68%) Exp Day 38 Cort 1 C 6.0 ±.2 E 2.5 ±.1 2 C 8.6 ±.4 E 4.0 ±.1 Lg3 (titer log) Exp Day 38 1 C 4.0 ±.1 E 2.7 ±.3 2 C 5.0 ±.3 E 2.8 ±.2 | Unable to
ascribe
effect to a
particular
field | Relates effects
of VDT
exposure to
physiological
anomalies | Continuous
exposure to
any field is
unlikely
especially
during
development | Continuous exposure to EMFs from VDTs or computers adversely affects embryos or young chickens | | Study 21
Maintain
37.5°C,
limits not
given | 5,10, or
15 days
contin-
uous
exposure | H&H stage
size weight of
embryos | According to H&H classification measured using stereoscopic lens Salter Electroscale | Stage only 10 day exp
to 1813 2/EM showed
sig difference p .001
Size & weight only exp
to 363e 2/cm at day 15
showed sig differences | Difficult to
determine
size &
weight
accurately (a
range) | Non-exp
variables were
carefully
controlled | Fields were
unusually
large.
Graphs
difficult to
interpret | Different and growth are sensitive to EMFs but the intensity affecting each is different. Differentiation growth | | | | OUTCOME | & DISEASE MODEL | | | | | | |--|--|---|---|---|--|---|--|--| | Temp
Study 22
Not given,
38°C in
previous | Duration Starting at 4 hrs incubation 2 hrs exp 4 hours exp to day 9 | Endpoint(s) Major malformations, Death | Assessment Method At day 9 embryos were assessed for morphological alteration or lethality | Effects Observed Results w/numbers Cont Exp N 96 114 D&M 10 20 E 0.10 0.18 N 95 110 D&M 17 83 E .57 .23 N 182 189 D&M 144 109 E 8.0 5.9 Effects are pooled | Flaws Eggs removed from incubator during exposure to MFs for 2 hrs at time | Strengths Reproducible results in 3 different studies | Limitations Spontaneous embryonic death was high | Conclusions MFs at 50 Hz and 10 mT di not adversely alter chick development. Prior exposur to MFs as us in this study provides protection against chemical teratogens su | #### **OUTCOME & DISEASE MODEL** Effects Observed Duration Endpoint(s) Assessment Method Results w/numbers Flaws Strengths Limitations Conclusions Temp Study 23 From 2 hr Major Embryos removed and 10 MT Investigated Field strength Exposure to 10 Eggs malformations # of abnormal & dead Pooled data interaction heavier than MT or 6 µT to 8 days, removed 38°C, no & embryo embryos counted Sham from between routinely fields with max limits given Sig exposure toxicity E = D&MΕ incubator for different encountered horizontal or 70 hours 0.11 NŠ intensities and Ν 54 2 hr intervals vertical vector Exposure field vector is not damaging 94 0.10 NS to the 10 MT developing Sham embryo .00 NS 13 **Exposed** 42 .09 6 μΤ Sham NS 21 .19 Ехр 20 .10 6 μΤ Sham 31 .19 Ехр 30 .06 NS | | | OUTCOME | & DISEASE MODEL | | | | | | |---|---|---|--|--|--|---|--|--| | Temp Study 24 Not given, but 38.0°C in previous | Duration 20 hrs for indirect & 12 hrs for direct exposure | Endpoint(s) Major malformation and embryo toxicity | Assessment Method Embryos removed on day 9 & embrotixicity determined | Effects Observed Results w/numbers 10 MT – Ind x-ray 0.64 MF& Xray 0.47-p.003 Control 0.08 19 NT direct | Flaws Eggs removed from incubator for 2 hour | Strengths Showed positive interaction between MFs and other | Limitations
Small
samples | Conclusions Exposure to MFs prior to x- rays, produce a reduction in teratogenicity. | | study | Спрозаго | | | x-ray 0.51
x-ray & MF 0.76 p=.02
Control 0.12 | intervals | teratogens | | If MFs were applied after x-rays (direct interaction) teratogenicity was potentiated | | Study 25 | 2 hrs | Abnormals at | Embryos removed at | | Both | Morphology | High intensity | Exposure to a | | 38.1°C <u>+</u>
0.2°C | exposure 22 hrs no exposure for either 48 hrs or entire incuba- tion period | day 2 (48 hrs)
histololy and
histochem | 48 hrs & abnormalities and stage of development noted. Histological examination of embryos at days 7,12, and 18. Histochemistry on 7-day embryo was out. | | exposed and
sham eggs
in same
incubator | and histology
collected as
well as
extended
observation | of exposure
and in
protocal A
very short
exposure
time. | high intensity EM field (200 µT) if a short repeated period does not adversely affect development of the chick embryo. |